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Abstract. New theoretical methods are reported for ab initio calculations of the adiabatic
(Born-Oppenheimer) electronic wave functions and potential energy surfaces of molecules
and other atomic aggregates. An outer product of complete sets of atomic eigenstates
familiar from perturbation-theoretical treatments of long-range interactions is employed
as a representational basis without prior enforcement of aggregate wave function anti-
symmetry. The nature and attributes of this atomic spectral-product basis are indicated,
completeness proofs for representation of antisymmetric states provided, convergence of
Schrodinger eigenstates in the basis established, and strategies for computational imple-
mention of the theory described. A diabatic-like Hamiltonian matrix representative is
obtained which is additive in atomic-energy and pairwise-atomic interaction-energy matri-
ces, providing a basis for molecular calculations in terms of the (Coulombic) interactions
of the atomic constituents. The spectral-product basis is shown to contain the totally
antisymmetric irreducible representation of the symmetric group of aggregate electron co-
ordinate permutations once and only once, but to also span other (non-Pauli) symmetric
group representations known to contain unphysical discrete states and associated continua
in which the physically significant Schrodinger eigenstates are generally embedded. These
unphysical representations are avoided by isolating the physical block of the Hamiltonian
matrix with a unitary transformation obtained from the metric matrix of the explicitly an-
tisymmetrized spectral-product basis. A formal proof of convergence is given in the limit
of spectral closure to wave functions and energy surfaces obtained employing conventional
prior antisymmetrization, but determined without repeated calculations of Hamiltonian
matrix elements as integrals over explicitly antisymmetric aggregate basis states. Com-
putational implementations of the theory employ efficient recursive methods which avoid
explicit construction the metric matrix and do not require storage of the full Hamilto-
nian matrix to isolate the antisymmetric subspace of the spectral-product representation.
Calculations of the lowest-lying singlet and triplet electronic states of the covalent elec-
tron pair bond (Hy) illustrate the various theorems devised and demonstrate the degree of
convergence achieved to values obtained employing conventional prior antisymmetrization.
Concluding remarks place the atomic spectral-product development in the context of cur-
rently employed approaches for ab initio construction of adiabatic electronic eigenfunctions
and potential energy surfaces, provide comparisons with earlier related approaches, and
indicate prospects for more general applications of the method.
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1.0 Introduction

Adiabatic electronic wave functions provide well-known first approximations to the
physical attributes of molecules and other forms of matter,!~3 and are prerequisites for
studies of the non-adiabatic dynamical consequences of avoided crossings and conical inter-
sections in the potential energy surfaces that guide the pathways of chemical reactions.*—6
Methods currently employed for constructing such wave functions and energy surfaces
include ab initio quantum chemistry,” 1% quantum Monte-Carlo simulations,'!>'? density-
functional approaches,'3~18 semi-empirical techniques,'®=23 hybrid quantum mechanical/
molecular mechanical (QM/MM) combinations,?* and various forms of long-range pertur-
bation theory.2=3% Although these methods have provided a significant amount of useful
information over the past few decades, they arguably do not constitute a quantum theory
of chemical bonding, which would preferably express the chemical attributes of compounds
in terms of intrinsic properties of their atomic constitutents. New approaches in this spirit
to construction of adiabatic electronic wave functions are clearly welcome, particularly if
they can retain the desirable features of the existing methods while ameliorating some of
their shortcomings.

The ab initio approaches employing multi-configurational Hartree-Fock, Mgller-Plessett
perturbation theory, and multi-reference configuration mixing methods,”® and the coupled-
cluster,? valence-bond,'® and quantum Monte Carlo'!'? approaches, can provide highly
accurate energies and other properties for the ground and excited states of small molecules,
but they generally require allocations of significant computational resources for this pur-
pose, and they are apparently not yet applicable to large atomic aggregates. By con-
trast, the widely employed density-functional,'3~!® semi-empirical,}=23 and QM/MM?4
approaches can be applied to larger aggregates, including atomic clusters,?? condensed
matter systems,?? and biological macromolecules,?* and in certain cases provide electron-
ically excited states, although their a priori accuracy is frequently unknown. Long-range
Rayleigh-Schrodinger and symmetry-adapted perturbation theories have also proved useful
in appropriate limits,?5~3% although widespread and systematic applications of perturba-
tion theory to chemical interactions are apparently not yet in evidence. These methods
have all contributed to the collective development of a significant methological and compu-
tational base from which to draw upon in devising new ab initio approaches to electronic-
structure and spectral calculations.39—44

In the present manuscript, new theoretical methods are described for ab initio calcula-
tions of the adiabatic electronic wave functions and potential energy surfaces of molecules
and other atomic aggregates.*> Certain of the desirable attributes of the computational
methods currently in play for these purposes are incorporated in the development, which
employs an outer product of complete sets of atomic spectral eigenfunctions familiar from
the aforementioned perturbation-theoretical treatments of long-range atomic interactions.?®
In contrast to related earlier developments which employ prior antisymmetrization of prod-
ucts of atomic wave functions in atoms-in-molecules approaches,*6=58 antisymmetry is
enforced in the present development subsequent to construction of the Hamiltonian ma-
trix employing a unitary transformation to isolate its antisymmetric subspace. The to-
tal electronic Hamiltonian operator in the atomic-product representation takes a matrix
form in which the individual atomic energies appear explicitly as constants independent
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of atomic positions, with only a sum of pairwise-atomic interaction-energy matrices re-
quiring repeated evaluation as a function of aggregate atomic configuration in potential-
energy-surface calculations. The pairwise interaction-energy matrices depend only upon
the vector separations of the two interacting atoms, are independent of the positions of all
other atoms in the aggregate, and can be expressed in terms of one-electron atomic charge
and transition densities, which provide the computational invariants of the development.
Accordingly, the present approach does not require repeated calculations of Hamiltonian
matrix elements as integrals over antisymmetric many-electron aggregate basis functions;
rather, one-electron atomic charge and transition densities are calculated once and for
all for a spectrum of atomic states and retained for repeated use in construction of the
Hamiltonian matrix for arbitrary spatial arrangements of interacting atoms.

Notational conventions are established and the (Coulombic) form of the many-electron
Hamiltonian operator employed in the development given in Section 2. The atomic spectral-
product basis and certain of its attributes are described in Section 3 employing complete
sets of spin orbitals in representations of the many-electron atomic spectral eigenstates. It
is shown that the totally antisymmetric irreducible representation of the aggregate symmet-
ric group is spanned once and only once by the atomic-product basis, although other (non-
Pauli) symmetric-group representations are also contained in the reducible product. The
form of the Hamiltonian matrix in the spectral-product representation is given in Section 4,
methods are described for its evaluation in terms of one-electron atomic transition-density
matrices, and certain attributes of the spectrum of the Hamiltonian matrix are indicated.
In Section 5, methods are reported for formal isolation of the totally antisymmetric block of
the spectral-product Hamiltonian matrix employing a unitary transformation derived from
the metric matrix of the antisymmetrized spectral-product basis. Convergence is demon-
strated in this way to eigenstates and energies identical to those obtained in the linearly
independent subspace of this prior antisymmetrized representation. Aspects of the theory
are illustrated with calculations reported in Section 6, which employ efficient recursive
methods for isolating the totally antisymmetric block of the Hamiltonian matrix, avoiding
explicit construction of the metric matrix and of the entire Hamiltonian matrix at any one
time. Convergence to the lowest-lying singlet and triplet potential energy curves of the
electron pair bond (Hz) is achieved employing even-tempered Gaussian orbital representa-
tions and related computational methodology. Finally, the new development is discussed in
the context of currently employed electronic-structure approaches, comparisons are made
with related earlier theoretical methods, and prospects for more general applications of
the method are indicated in concluding remarks provided in Section 7.

2.0 The Aggregate Schrodinger Equation

The adiabatic electronic eigenstates and energies of an N-atom molecule or other atomic
aggregate are obtained from the Schrodinger equation

H(1,2,...,n: R)¥(1,2,....,n: R) =¥(1,2,...,n: R)-E(R), (1)

where ¥(1,2,...,n : R) is a row vector of orthonormal eigenstates ¥Ur(1,2,...,n : R)
having quantum labels I' and E(R) is the diagonal matrix of corresponding eigenvalues
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Er(R). The Hamiltonian operator appearing in Eq. (1) is written in the form

N
H(1,2,...,n Z{H(a)z R.) + Z ASACTE Rﬂ)} 2)

a=1 B=a+1

where
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is the Hamiltonian operator in the familar Coulomb approximation for a set of n,, electrons
which are arbitrarily associated with the atomic nucleus at position R,, and whose 3n,
spatial coordinates are represented by the single vector label ¢, and
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is the Coulombic interaction potential between atoms o and 3, where the coordinate label 3
refers to the 3ng spatial electron coordinates arbitrarily associated with the atomic nucleus
at the position Rg.% The indecies 1,2,...,n in Egs. (1) and (2) represent the collected
spatial coordinates of disjoint sets of electrons, each arbitrarily associated with one of the
atomic nuclei in the aggregate.

In the foregoing equations and throughout the development, all electron (7;) and
atomic-position (R,) coordinates are defined in the laboratory frame, r;, = r; — R,
and rjg = r; — Rg are electron coordinate vectors relative to the indicated atomic po-
sitions, 7;;; = r; — r; is the (7,7) electron vector separation, R,g = R, — Rg is the
(a, B) atomic position vector separation, R = (Ri, Ra,..., Ry) specifies the positions
of all the atoms in the entire aggregate, e is the magnitude of the electronic charge, m
is the electron mass, Z, and Zg are atomic numbers, and the other symbols have their
usual meanings.>® A colon is employed to separate electron coordinates from atomic po-
sitions (¢ : R,), and a semi-colon is employed in Eq. (4) to distinguish sets of electrons
(2; 7) between which the interaction potential V(@) (4;5 : Ryp) is not totally symmetric
under coordinate permutations. Of course, the ns-electron (n; = ny + na + ---ny) aggre-
gate Hamiltonian H (1,2,...,n : R) and the individual n,-electron atomic Hamiltonians
H@) (i : R,) are symmetric sums of one- and two-electron operators in their respective
electron labels. Accordingly, the notation employed in Egs. (1) to (4) does not by itself
constitute a meaningful assignment of particular electrons to particular atoms, although
it does suggest this possibility in conjunction with the choice of an appropriate electronic
representational basis.

The physical eigenstates ¥(®)(1,2,...,n: R) and eigenvalues E?®) (R) included in the
solutions of Eq. (1) for the Hamiltonian of Egs. (2) to (4) have good total spin and spin-
projection quantum numbers (S, Mg) and transform as the totally antisymmetric repre-
sentation (1™t) of the symmetric group S, of the aggregate electron spin and spatial coor-
dinate permutations,5 whereas additional (non-Pauli) eigensolutions ¥(*)(1,2,...,n: R)
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of Eq. (1) which transform as other than the totally antisymmetric irreducible representa-
tion under electron coordinate permutations are generally regarded as unphysical, as are
the corresponding energies E(*)(R).5!

3.0 Definition and Attributes of the Spectral-Product Basis

The physical and unphysical solutions of Eq. (1) which together comprise the full
spectrum of the Hamiltonian operator of Egs. (2) to (4) can be constructed in a many-
electron spectral-product basis the nature and attributes of which are described in this
section. The presence of unphysical states and the importance of devising methods for
their elimination is emphasized throughout the development.

3.1 Spin-Orbital Basis Sets

Conventional variational approximations to the solutions of Eq. (1) in their most
common form employ one-electron basis sets of atomic spin orbitals in Slater, Gaussian,
or other forms centered at each of the aggregate atoms (« = 1,2,..., N). Such basis sets,
employed here largely for purposes of analysis,®? are conveniently written as row vectors
¢ (i : R,) of orthonormal one-electron functions qﬁ(a) (i : R,) of the individual electronic
spin and of spatial coordinates measured relative to the atomic positions (i = r; — Ry).
These functions are generally enumerated employing an appropriate set of quantum labels
Ya, are assumed complete in a finite three-dimensional spatial domain, and, accordingly,
satisfy the closure relation

(i Ry)- (i Ry =) ¢\ (it Ry (i Ra)* = 6@ (i—d)  (5)

’Yazl

in this domain, where ¢(®) (i’ : R,)% is a column vector comprised of the complex conjugate

spin orbitals gb(a)( : Ry)*. The choice of particular spin orbitals employed in Eq. (5)
is arbitrary in the hmlt of a complete set, but the rate of convergence of computational
developments built upon them will generally depend upon the specific basis employed.%2

Traditional uses of these one-electron basis sets in connection with solution of Eq.
(1) follow well-known molecular-orbital or valence-bond methods in constructing many-
electron representational basis sets.®® These conventional developments have in common
the representation of each electron in a “symmetrical” or “democratic” manner and the use
of prior term-by-term electron coordinate antisymmetrization of the many-electron basis
employed.®! In the molecular-orbital approaches, the common one-electron basis set that
extends over the 3n;-dimensional spatial domain of the aggregate is employed to describe
the positions of any of the electrons in antisymmetric Slater determinants,”® whereas in the
valence-bond methods over-all term-by-term prior antisymmetry insures the canonical spin-
paired product states employed treat the electrons in a democratic fashion.'® Of course,
use of prior antisymmetry, and of symmetry adaptation more generally, guarantees that
the matrix representative of the Hamiltonian operator obtained will be block diagonal and
of minimal possible dimension for the states of interest in the basis employed, in accordance
with Schur’s lemmas.5°

3.2 Many-Electron Outer-Product Basis Set
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In contrast to the aforementioned conventional developments, it is possible to forego
prior symmetry adaptation of the individual terms in the many-electron basis set in favor
of other potential advantages and simplifications by employing n;-electron states which
are not individually antisymmetric at the outset. Such states can be constructed from
products of nq-electron atomic basis states which themselves are written in the form of
simple products of spin orbitals,

(3 : Ra) Hqs(a) (6)

where the label I', specifies a particular choice of spin orbitals on the atom « in the indi-
cated n,-term product. The row vector IT(®) (3 : R,) obtained from all I',, values includes
all possible unrestricted spin-orbital products in Eq. (6), thereby providing a complete
representational basis for n,-electron eigenstates consequent of Eq. (5). Accordingly, the
complete outer product of such states for all atoms in the aggregate, written in the form
of the complete separable Hilbert space

II(1;2;...;n: R) = {H(l)(l RO (2:Ry)®--- TN (n : RN)}O, (7)

similarly provides a complete representational basis for the entire ni;-electron aggregate.
Here, semi-colons are employed to separate groups of electrons (1;2;...;n) distinguished
by virtue of their representations in the different sets of spin-orbital product states em-
ployed for each atom, whereas the outer-product symbol ”®” is used to indicate that all
possible products of the atomic basis functions are included in the vector IT(1;2;...;7n :
R). The bracket symbol {---}, implies choice of a particular rule for enumerating and
ordering the product functions in the row vector II(1;2;...;n : R), which rule, although
arbitrary, must be adhered to in matrices constructed in the outer-product basis and in
related vector and matrix multiplications.

The basis of Eq. (7), in which specific sets of electrons (1;2;...;n) are arbitrarily as-
signed to specific atoms (1,2,...,N) and are described employing different sets of orbital
functions [Eq. (5)], does not provide individual n;-electron functions which transform irre-
ducibly under aggregate electron coordinate permutations, nor are these functions generally
eigenstates of total electron spin or of other aggregate commuting operators. Nevertheless,
as a consequence of the closure relations of Eq. (5) for the different sets of spin orbitals,
the aggregate outer-product basis satisfies the closure relation

N N
M(1;2;...;n: R)II(1;2';...;n' : R)' = H MG Ry) T (@ : Ry — H 6 (4—1"),

a=1
(8)
where the product of delta functions on the right-hand side expresses completeness of the
basis as a separable Hilbert space in the spin coordinates and over a 3n;-dimensional spa-
tial domain. Accordingly, convergence at least in the norm to physical and unphysical
eigenstates of irreducible symmetry can be achieved in the basis of Egs. (5) to (8), poten-
tially providing approximations to any of the aggregate Schrodinger eigensolutions of Eq.

(1)
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3.3 Atomic Spectral Eigenstates

It is convenient to perform a series of formal unitary transformations of the complete
product basis sets of Eq. (6) which bring the matrix representatives of the individual
atomic Hamiltonian operators of Eq. (3) into diagonal forms, thereby simplifying the
total Hamiltonian matrix but leaving the solutions of Eq. (1) in the basis invariant.
Specifically, because a single spin-orbital basis set is used for all electrons ¢ on atom c,
and all spin-orbital products are present in Eq. (6), all permutations among electron
coordinates 7 are also included explicitly for each atomic site. It should be recalled in this
connection that all permutations of electron coordinates among the spin-orbital products of
Eq. (6) are included explicitly in conventional atomic structure theory, so that the orbital
configurations employed to represent atomic states must be limited to sets of ordered spin-
orbital products in Slater determinants to insure the linear independence of the basis states
employed.®2 The present development, in which all orderings of spin-orbital products for
a given atom are included but only a single assignment of electrons to spin orbitals is
made, is entirely equivalent to the standard method because a common spin-orbital basis

is employed in a symmetrical representation of all the electrons in a given atom.®!
The eigenstates of the atomic Hamiltonian of Eq. (3),
H(: R)®Y(i: Ry) = ®Y(i: R,)-E®, (9)
are represented in the form
@ (i:R,) =T : R,)- U@, (10)

where the unitary transformation matrix U(® is independent of R, and E(®) is the diag-
onal matrix of all atomic eigenvalues of the atom « obtained from the matrix Schrodinger
equation

(T (G : R H™ (i : R)|ITTY (i : R,))- U = U@ . E@), (11)

In Eq. (11), an outer-vector-product convention is employed on the left-hand side to pro-
vide matrices having conventional row and column labels formed from the indicated bra
(TI®) (3 : R,)| and ket [TI(®) (3 : R,)) vectors. The irreducible-symmetry labels or good
quantum numbers of the eigenstates of Eq. (9) can also be accommodated into the trans-
formation matrix of Eqs. (10) and (11) without loss of generality, and so ®(®) (i : R,) can
be taken to be a row vector of functions (I){“(Z) (2 : R,) which are multiplet eigenstates of
the Hamiltonian H(® (i : R,) having specific energy Er_, orbital and spin angular mo-
mentum, and parity values; i.e., Ty, = (E,L,M,S,Ms,P),.5 These atomic eigenfunctions
transform either as physical (totally antisymmetric) or unphysical (non-Pauli) irreducible
representations under the coordinate permutation group S, for electrons in the set 4.0

Combining the unitary transformations of Egs. (10) and (11) for all atoms in the
aggregate, a complete set of products of atomic spectral eigenstates is obtained in the
form

®(1;2;...;n: R)=1I(1;2;...;n: R)- U, (12)
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where U = {U(l) U g...UW )} o s the appropriately ordered outer matrix product
of unitary transformation matrices of the individual spectral basis sets of Eqs. (10) and
(11), and

P(1;2;...;n: R) = {<I>(1)(1 R)®®D(2: Ry)®@--- N (n: RN)}O (13)

is the resulting complete set of ordered products of atomic spectral eigenstates. As a
consequence of Eq. (8) and the definitions of Egs. (9) to (12), the spectral-product states
of Eq. (13) satisfy the closure relation

N N
®(152;...;n: R)}-®(1;2;.. 50 R)f = [[ (i : Ra)- @ (i : Ra)T — [ 6 (i—7')
a=1 a=1

(14)
for all irreducible representations of S,,, and so can be employed in descriptions of any
of the eigensolutions of Eq. (1). Use of the spectral-product representation of Eq.
(13) in place of the outer-product representation of Eq. (7) constitutes a partial pre-
diagonalization of the aggregate Hamiltonian matrix which leaves its dimension unchanged
and otherwise provides results equivalent to those obtained from the outer-product basis.

3.4 Restriction to Antisymmetric Atomic States

In view of the non-symmetrical nature of the spectral-product basis of Eq. (13), and
of the fact that the outer product of the symmetric groups of the individual atomic con-
stituents forms a subgroup of the full electron-coordinate permutation group (51® S>®- - -
SN C Sp,), some care must be exercised in employing standard group-theoretical proce-
dures in identifying and isolating the desired totally antisymmetric representation (1™t) of
S, contained in the basis. The appropriate group-theoretical product in this case is the
outer product of subgroup representations, as opposed to the inner Kronecker group prod-
uct which is commonly reduced employing a Clebsch-Gordan decomposition.®® Moreover,
in the representation of Eq. (13), although electron-coordinate permutations within each
set ¢ are included explicitly, those permutations involving at least one transposition of elec-
tron coordinates from different sets ¢ and 7 at the two atomic sites o and [ are spanned
implicitly. Nevertheless, in the limit of the closure associated with use of all orderings
of spin-orbital products in Eq. (13), the latter implicit electron coordinate permutations
are all effectively present in Eq. (13) and the standard outer-product reduction theory
applies.®0

Although there is apparently no convenient way in which to use group-theoretical meth-
ods in the explicit construction of a particular irreducible subspace in the ordered-product
representation of Eq. (13), the outer-product reduction procedure can, nevertheless, be
employed as an analytical device in this connection.?? In particular, it can be demon-
strated that some (but not all) of the unwanted unphysical representations of S,,, spanned
by the basis of Eq. (13) are removed by the simple expedient of restricting the atomic
eigenstates in the vectors @®(®) (i : R,) for all atoms « to the physical subspace “p” of

eigenstates <I>1([,a)(i : R,) which are antisymmetric in the n, electron coordinates i. The
required demonstration follows from the standard outer-product reduction rules,®® which
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indicate that the presence of any horizontal (“symmetric”) strip in either of two Young
patterns associated with distinct symmetric groups disallows the appearance of the totally
antisymmetric representation in the reduction of the outer-product of the two patterns in
the combined permutation group. More specifically, the reduction of the outer product of
any two irreducible representations (v, ®vy,) of two distinct symmetric groups Sy, Sy, into
irreducible representations of the group 5,,1,, includes the totally antisymmetric represen-
tation 1("*t™) of S, ., once and only once if and only if the two subgroup representations
are the totally antisymmetric representations v, = 1™ and +,, = 1™. Letting S,, represent
the symmetric group for the first o —1 atoms in the aggregate (n = ny+na+---nq—1), set-
ting Sy, =05y, , the symmetric group of the atom «, and assuming that 1™ is contained only
once in Sy, it is seen that 1" ® =y, contains 1(n+na) only once if and only if Vn, = 17,
Correspondingly, it follows by induction that the totally antisymmetric representation
1"t of Sy, is obtained once and only once in the reduction of the entire outer product
(Yny ® Yny ® -+~ Yny ) if and only if v, = 1" for all a.

In accordance with the foregoing observations, a complete but not over-complete linearly-
independent orthonormal subspace of the spectral-product basis of Eq. (13) suitable for
representations of totally antisymmetric aggregate states is contained in the products of

the physical (antisymmetric) atomic eigenstates @,(,a) (i: R,),
®(1;2;...;N:R) = {@1()1)(1 R ® @1(32)(2 Ry ® - <I>1([,N)(n : RN)}O : (15)
The spectral closure relation of Eq. (14) correspondingly now becomes operative only

in the subspace of irreducible representations of S,, spanned by the outer product of all
antisymmetric atomic eigenstates,

N N
®(1;2;...;n: R)-®(1/;2';...;n : R)T = H @éa)(i : Ra)-@g’)(i/ ‘R, — H 51()a)(i—’i'),
a=1 a=1

(16)
where (5,(3a)(z' — ') refers to the Dirac delta function in the totally antisymmetric physical
subspace <I>§,a) (¢ : Ry) of the atomic states [cf., Eq. (14)].

Although some of the non-totally-antisymmetric representations of S,, present in the
outer-product basis are generally absent in the basis of Eq. (15), a certain number of
these non-Pauli representations are always present. The number and type of unphysical
irreducible representations of S,,, spanned by the reducible spectral-product representation
of Eq. (15) is determined by the total number of electrons n; and by the partitioning
of these into the particular atomic values ni,no,...,ny employed. Although, strictly
speaking, these unphysical irreducible representations are not explicitly required in the
present development, they can be enumerated in specific cases employing the outer-product
reduction rules in the usual way.®® By this identification it is made clear that the basis
of Eq. (15) can span unphysical states of very low energy arising from “over-filled” inner
shells and their associated continua, in which the physical states can be embedded.32—37

The basis of Eq. (15) has been employed previously in a number of related connec-
tions, including long-range and exchange perturbation theories?*~38 and so-called atoms-
in-molecules*6—5% and related diatomics-in-molecules®~5® methods. In contrast to the
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present development, the atoms-in-molecules approaches employ explicit prior antisym-
metrization of the spectral-product basis of Eq. (15), in spite of the consequent linear
dependence in the limit of closure this approach entails, and the perturbation-theoretical
methods are generally applicable only in cases of weak long-range atomic interactions. The
representation of Eq. (15) would appear to be particularly appropriate for molecules and
other atomic aggregates even in the absence of prior aggregate antisymmetry in that it
is strictly orthonormal and contains the antisymmetric representation only once, avoiding
thereby problems of linear dependence. It furthermore isolates the most singular intra-
atomic Coulombic interactions in the individual atomic wave functions employed as a basis,
gives the exact aggregate energies in complete dissociation limits, and results in a Hamil-
tonian matrix of particularly simple form (see below). Additionally, the basis of Eq. (15)
provides the possibility of developing an atomic-interaction-based approach for evaluating
an aggregate eigenspectrum in which the exclusion principle among aggregate electrons is
accommodated in accordance with the degree of interaction between atoms, rather than as
a global constraint applied uniformly and uncritically among all electrons present, which
constraint is generally not required in the case of highly separated or otherwise weakly-
interacting atomic constitutents.54

4.0 Spectral-Product Representation of Schrédinger Eigenstates

The spectral-product basis defined in the preceding Section can be employed to con-
struct solutions of Eq. (1) following standard variational procedures. Specifically, employ-
ing an expansion of eigenfunctions in the spectral-product basis of Eq. (15) in Eq. (1) and
projecting with each of the orthonormal product functions in the basis in the usual way
gives the familiar matrix Schrodinger equation®?

H(R) - Un(R) = Un(R) - E(R), (17)
where E(R) is the desired diagonal matrix of aggregate eigenvalues, and the unitary matrix
Un(R) = (®(152;...;n: R)|¥(1;2;...;n: R)) (18)

provides a representation of the Schrodinger eigenstates spanned by the basis of Eq. (15)
in the form
Y(1;2;...;n: R)=®(152;...;n: R)- Ug(R). (19)

The semi-colons in the Schrodinger eigenstates ¥(1;2;...;n : R) are employed to empha-
size that these solutions are obtained from Egs. (15) to (17), in which the orthonormal
aggregate product-function basis states appearing in the expression of Eq. (19) for the wave
functions are not individually antisymmetric under all electron-coordinate permutations.

4.1 Form of the Hamiltonian Matrix

The matrix representative of the aggregate Hamiltonian operator appearing in Eq. (17)
takes the form™*®

H(R) = (@(1;2;...;77,:R)\ﬂ(l,z,...,n:R)\<I>(1;2;...;n:R))
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=S {HO+ 3 VEIN(R,)}, (20)

B=a+1

where H(® and V(a’ﬂ)(Rag) are Hermitian matrix representatives of the operators of Eq.
(3) and (4) in the spectral-product basis. The atomic energy matrix H(®) is a constant
diagonal matrix independent of atomic position vectors, whereas the interaction matrix
V(a’ﬂ)(Rag) is non-diagonal and depends explicitly upon the vector separation R,g of
the two indicated atoms, but not upon the individual laboratory-frame positions R, and
Rg of the two atoms, nor upon the position vectors of the other atoms in the aggregate.
The particularly simple form of Eq. (20) is largely a consequence of the orthogonality of
the spectral-product basis, the use of atomic eigenstates in the representation, and the
atomic pairwise-additive nature of the interaction terms in the Hamiltonian operator of
Egs. (2) to (4).

The specific forms of the atomic-energy and pairwise-atomic interaction-energy matri-
ces of Eq. (20) depend upon the choice of ordering rule adopted in Eq. (15). Employing,
for example, the common “odometer” ordering convention of letting later indices run to
completion prior to earlier ones, the last atomic matrix H™Y) and the pairwise interaction-
energy matrix VIV-1,N )(RN_l ~) for the last two atoms are seen to take block diagonal
forms, with matrices constructed in the appropriate atomic and atomic-pair product states,
respectively, appearing repeatedly down their diagonals. The atomic-energy and pairwise-
atomic interaction-energy matrices of Eq. (20) for an arbitrary pair of atoms («, 3) can be
obtained in this convention by starting from the block diagonal versions of these matrices
and performing appropriate row and column interchanges which are determined by the po-
sitions of o and [ relative to the last two indices N — 1 and N, respectively, enumerating
the atoms.

Regardless of the choice of ordering convention implied by the label O of Eq. (15), the
atomic matrices can always be written as the ordered outer products

«) __ Q@ N
H()_{II()1)®II(]2)®...E§))®---I§D )}O’ (21)
where A
E(® = (@ (i : Ry)| A (i : Ry)| @) (i : Ry)) (22)

is the diagonal matrix of physical eigenenergies of the atom « [Egs. (9) to (11)], arranged by
convention in energy-increasing order down the diagonal. The interaction-energy matrices
are correspondingly written

V@) (R,p) = {11(01) RID @ v (Ryp) ® - .II(DN)}O 7 (23)

where
v (Ryp) = (2@ (4,5 : Rop)|[V@P) (3,5 : Rop)| @@ (3,5 : Rag))  (24)

is the interaction-energy matrix in the ordered atomic-product basis for the («, ) pair,
given by the expression

@P) (3§ : Rop) = {@1(30‘)(7: :Ry) @ @ (5 : Rﬁ)} (25)

O.
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In Egs. (21) to (25), Iéa) is the unit matrix expressing the orthonormality of the
antisymmetric atomic spectral basis [Eq. (9)], an outer-matrix-product convention is
adopted for the multiplication of matrices enclosed in the brackets {...}, and the sub-
script “O” implies ordering of the terms in the energy matrices H(®), V(a’ﬁ)(Rag) and
vectors ®(*A)(i;5 : R,p) in accordance with the positions of the individual functions in
the row vector of Eq. (15). The pair-product states of Eq. (25) are written for notational
simplicity as functions of the vector separation R,g, rather than of the two position vec-
tors R, and Rg, in accordance with primary interest here in their use in evaluation of
v(®A) (R,p).

As should be clear from the discussion of Section 3, the functions ®(®#)(3;j : R,p)
span the totally antisymmetric representation of S, 1, once and only once, but also span
other irreducible representations of the «, # atomic-pair permutation group, and so these
functions do not warrant a subscript “p” designating a physical subspace of the generally
reducible product of Eq. (25). It should also be clear that the matrix E,()a) of Eq. (22) in
the atomic spectral basis  has a dimension smaller than that of the matrix v(®%)(R,z)
of Eq. (24) in the «, 3 atomic-product spectral basis, although the matrices H® and
V(@A) (R,p) of Eqs. (21) and (23), respectively, have the same dimension as the entire
spectral-product basis of Eq. (15).

The vector dependence of v(®#)(R,s) upon R,s indicated in Eq. (24) arises from
the dependence of the product basis of Eq. (25) on both the magnitude and the angular
orientation of the vector R,g in the laboratory frame. Using the transformation properties
of the atomic basis functions under rotations,®® the interaction-energy matrix of Eq. (24)
is given by the expression®*

v (Ryp) = RO (Rep)T - v@P) (Ryp) - RO (R,p), (26)

where R(*#)(R,z5) = {D®(R,s) @ D®)(R,p)}0 is an ordered outer product of Wigner
rotation matrices for each atom effecting the transformation from a reference orientation in
which the two z axes of the interacting atoms are co-aligned to one in which they take their
physical orientations in the laboratory frame.®® The irreducible interaction-energy matrix
v(®P)(R,p) of Eq. (26), which is obtained from Eq. (24) evaluated in the co-aligned
reference frame, depends only upon the scalar separation of the two atoms R,g, whereas
the notation Rap (= dap,bap,0) employed in the Wigner functions in Eq. (26) refers to
the two angles specifying the direction of the vector R,g in the laboratory frame.

Once the matrices of Eqs. (22) and (24) have been constructed, those of Egs. (21)
and (23) must be assembled by performing the row and column re-orderings implied by
the symbol “O”. Although the dimension of the resulting Hamiltonian matrix of Eq. (20)
grows exponentially with the number of atoms considered [~ O(BY) for large numbers N
of identical atoms with B basis states each|, the pairwise nature of the interaction terms
of Eq. (4) insures that nonzero matrix elements are obtained only between aggregate
spectral-product states that differ by no more than two atomic eigenstates, not unlike the
familiar Slater’s rules for two-electron atomic matrix elements between determinantal wave
functions comprised of orthonormal orbitals.53:56 Accordingly, H(R) is a sparse matrix
which contains non-zero elements the number of which in any row or column grows only
as the square of the number of atoms N and of the number of basis functions B [~
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O(N?B?)], rather than exponentially, with large numbers of atoms and basis functions.
The latter observation follows from the number of spectral-product functions that can
differ from a given spectral product by zero, one, or two individual atomic labels, and
insures that H(R) grows more sparse as N and B increase. These circumstances, and the
fact that the locations of the non-zero elements in any row or column of the matrix of Eq.
(23) are known a priori, suggest that techniques familiar from large-scale configuration-
interaction methods,®® including particularly recursive or unitary group methods which
avoid construction of the entire Hamiltonian matrix at any one time, can be employed in
obtaining the eigensolutions of Eq. (17), issues addressed separately below.

4.2 Evaluation of Atomic-Energy and Interaction-Energy Matrices

The atomic-energy matrices of Eq. (22) can be evaluated once and for all employing
conventional electronic structure theory in its various forms®9=%3 in constructing the large
denumerable spectrum of eigenfunctions generally required to satisfy the completeness
conditions of Eq. (16). Of course, highly accurate experimental values are also generally
available for a significant number of the low-lying atomic energies of most atoms.6” Accord-
ingly, adopting a commonly employed stratagem, the available experimental values, possi-
bly corrected to Coulombic limits by approximate removal of relativistic contributions,%8:6°
can be employed in place of the calculated low-lying values, which are generally less ac-
curate than the former, whereas the calculated higher-lying values can be employed as a
pseudospectrum of energies in place of the actual Rydberg and continuum atomic states.”
Such a calibration procedure,*® which is easily incorporated into the Hamiltonian of Egs.
(20) to (26), is particularly required in cases where the calculated low-lying atomic ener-
gies are not in accord with the energy orderings of the experimental spectra. Employing
this atomic calibration, the potential energy surfaces obtained from the development are
guaranteed to dissociate into accurate atomic separation limits, with calculations required
only to provide (Coulombic) interaction energies among the atomic constituents, rather
than the absolute values of the total aggregate energies. Of course, in many cases such an
atomic calibration procedure will be unnecessary, and the calculated atomic energies can
be employed without modification directly in construction of the Hamiltonian matrix.

The intergrals required in the irreducible pairwise interaction-energy matrices of Eq.
(26) are seen to be two-center, one- and two-electron Coulombic integrals, which can all
be calculated in closed analytical forms when Gaussian39—44 or Slater-like”!:72 orbitals are
employed, ensuring that high precision can be achieved in their evaluation. Specifically,
the irreducible interaction-energy matrix appearing in Eq. (26) is written in the form

v(a’ﬁ)(Raﬂ):/ dra/ drg {7 (ra) © v (xp)} VP (ro; 75 : Rap)  (27)
ro rg

using Eq. (24), where [cf., Eq. (4)]

N 7. Zae? Zze? 7. e> e2
V(aﬁ)(,,.a;,r : Rop) = aspt B . a +
O e " "Rag  Ira—Rp| |rg—Ra| = |ra—rsl

(28)
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is the two-center Coulombic interaction operator in the co-aligned coordinate system, R, =
Ryk and Rg = Rgk, with k the unit vector along the co-aligned z axes, and

7O (ra) = (2V(i: Ra)l Y 0(ra — 1) @Y (i : Ra)) (29)

73=75 with a similar

is the so-called one-electron transition density matrix for atom «,
expression employed for atom .

Evidently, the Hermitian matrices of Eq. (29), properties of which have been discussed
previously in the context of nuclear spectroscopy and nucleon scattering by nuclei,”~7°
determine the associated irreducible interaction-energy matrices of Eqs. (26) and (27),
and so constitute the computational invariants required in the development of Egs. (20)
to (26). The matrices of Eq. (29) formally involve all the eigenstates of an individual
atom, and so they differ from so-called “reduced” one-electron density matrices, which
are scalar functions appropriate for individual atomic eigenstates.®? Rather, the diagonal
elements of the matrix ~v(® (ro) are the one-electron charge-density distributions of the
spectral eigenstates of atom «, whereas the off-diagonal elements give the one-electron
transition densities connecting these eigenstates. These quantities can be stored in the
form of matrices T'(® in the combined atomic-state orbital-basis (T'a,Ya) representation,
and employed in Eq. (27) in repeated “on-the-fly” calculations of the interaction energies
required in construction of the Hamiltonian matrix for the atomic configurations R consid-
ered. Alternatively, the pairwise interaction-energy matrices of Eq. (27) can be tabulated
on a grid of interatomic separations R,g for the interacting atomic pairs of interest and
retained for repeated Hamiltonian assembly. Accordingly, in this approach, large-scale
configuration-interaction calculations of the atomic spectral states need be performed only
once, and the asssociated one-electron transition-density or interaction-energy matrices
retained for repeated use, avoiding explicit high-level molecular configuration-interaction
or related calculations involving antisymmetric aggregate many-electron basis states at
different aggregate configurations.

4.3 Eigenspectrum of the Spectral-Product Hamiltonian Matrix

Although the development of Egs. (1) to (29) can be employed directly in computa-
tional applications in selected cases, a number of factors mitigate against adopting such an
approach more generally. Specifically, the spectrum [Eq. (1)] of the Hamiltonian operator
of Egs. (2) to (4) contains the aforementioned unphysical states, including continua in
which the physical solutions are embedded when any one atom in the aggregate contains
three or more electrons.32737 Accordingly, approximations to the physical states of Egs.
(1) to (4) in the full spectral-product basis may generally not be easily discernible among
the unphysical quasi-continuum states also spanned by the basis, and may, in fact, be
computationally inaccessible in the presence of the afore-mentioned low-energy non-Pauli
states present which are associated with over-filled inner-shell configurations and their cor-
responding continua. This situation is complicated by the fact that precise antisymmetry
will only be obtained from the development of Egs. (1) to (29) in the limit of spectral
closure, making identification of the desired physical states potentially subjective.
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The task of classifying the states obtained from the Hamiltonian matrix of Egs. (20)
to (29) is further complicated by their degeneracies. Specifically, the pairwise interaction-
energy matrices of Eq. (27) will be diagonal in the atomic spin quantum numbers S, Mg,
and Sg, Mg,, since the Coulomb interaction operator of Eq. (28) is independent of spin
coordinates. Consequently, the aggregate Hamiltonian matrix of Eq. (20) will generally
factor into noninteracting blocks associated with particular spin configurations of the ag-
gregate atoms (S,, Mg, =1,2,...N), and the eigensolutions obtained from Egs. (17) to
(29) will generally be fragmented into degenerate orthogonal components associated with
these contributing spin configurations. These components must be appropriately combined
ex post facto to form states of the correct irreducible symmetries.

In a case in which only two different aggregate spin configurations are present in the
spectral product basis [®(1;2;...;n: R) = ®1(1;2;...;n: R) @ ®3(1;2;...; N : R)],
for example, Eq. (17) factors into the two independent equations

Hy(R) - Uz(R) = Us(R) - Ex(R), (300)

where the off-diagonal matrix elements Hqo(R) and Ha; (R) vanish, and the diagonal en-
ergy matrices E1(R), Eo(R) and solution matrices U (R), Ua(R) are obtained from the
indicated separate diagonalizations of Hy;(R) and Hayy(R), respectively. The eigenfunc-
tions of Eq. (19) in this case,

W,(1;52;...;n: R)=®(1;2;...;n: R) - U (R) (31a)
Wy(152;...5n: R) = ®P3(152;...5n: R) - Us(R), (31d)
may include a solution [¥q(1;2;...;n : R)]; which in the limit of closure has the same
eigenvalue as a solution [W9(1;2;...;n : R)]; if both spin configurations can contribute to

the total wave function of the chemical aggregate [{Ei(R)}xr ~ {E2(R)};]- In general,
these two components must be identified and appropriately combined to construct the
correct antisymmetric aggregate eigenfunction which together they comprise. The two de-
generate spin multiplets obtained from Egs. (31), however, need not necessarily transform
irreducibly under electron coordinate-label permutations, and so there may be no way in
which to readily identify them a priori as potentially degenerate components of a totally
antisymmetric physical eigensolution of the Schrodinger equation, particularly in the pres-
ence of other nearly degenerate unphysical states. Although these circumstances may seem
unfamiliar, a similar situation would arise in treatments of atomic structure employing
unrestricted spin-orbital product configurations in constructing the Hamiltonian matrix,
rather than Slater determinants.®® Combinations of products of spatial functions and spin
eigenstates,”®"” or functions of spatial coordinates only,”® also employed in constructing
eigensolutions of irreducible symmetry similarly correspond to solutions expressed in the
fragmented forms of Egs. (30) and (31).

Finally, the factoring of the spectral-product Hamiltonian matrix into individual atomic
spin blocks can also lead to a failure to provide the correct numbers of multiplet states in
limits of large interatomic separations. This will be so in the common case of dissociations
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into open-shell atoms, where the failure to achieve closure in the spectral-product basis
in the absence of explicit electron exchange terms can give results which include only the
lowest-lying spin multiplet of an allowable number of degenerate states at large atomic
separations. These circumstances can lead to calculations of highly unphysical potential
energy surfaces which correlate with incorrect dissociation limits. Similar remarks apply
to cases in which charge-transfer terms contribute significantly to eigensolutions at large
interatomic separations, where the failure to achieve closure in the spectral-product ba-
sis and in the corresponding development of Eqgs. (17) to (29) could introduce spurious
variations in potential energy surfaces with increasing interatomic separations.

5.0 Convergence in the Spectral-Product Basis

Group-theoretical methods have been used previously in understanding the conse-
quences of the change in electron-coordinate permutation symmetry group upon formation
of atomic aggregates,3? and have been employed above to verify the presence of the totally
antisymmetric representation in the spectral-product basis. Such methods, however, are
largely inapplicable to reduction of the basis in the group S,, for computational purposes
in light of the non-symmetrical nature of the representation and the associated absence
of all electron coordinate permutations in explicit form in Eq. (15). In the present Sec-
tion, the totally antisymmetic representation of S,, spanned by the basis of Eq. (15) is
isolated, the additional troublesome issues identified in the immediately preceding Section
are overcome, and convergence to the correct Schrodinger eigenstates in the antisymmetric
subspace of the spectral-product representation is demonstrated.

Symmetry-adapted eigensolutions are devised in the following in the blocked forms

¥(1;2;...;N:R) = {\I’(p)(l;2;...;N:R),\I’(u)(l;2;...;N:R)}, (32a)
E(P)(R) 0

ER) =8 : 32b

= (%" ) (320)

where W) (1;2;...;n: R) and ¥(¥(1;2;...;n : R) refer to physical “p” and unphysical
“u” solutions of Egs. (17) to (19), respectively, and E(Sp N(R), Eg‘) (R) are the corresponding
diagonal eigenvalue matrices. These eigenspectra are obtained formally from a unitary
transformation of the aggregate Hamiltonian matrix of Eq. (20),

(33)

()
HS(R):US(R)T'H(R)'US(R)—)(HS (R) 0 )

o HY(R

which explicitly isolates the physical H(Sp ) (R) and unphysical H(Su) (R) blocks of the spectral-
product Hamiltonian matrix. The unitary transformation matrix Ug(R) obtained from
diagonalization of the aggregate metric matrix S(R) constructed from antisymmetrized
spectral-product states is shown to accomplish the blocking of Egs. (33), and the corre-
sponding eigenfunctions and eigenvalues of Egs. (32) are shown to converge in the limit of
closure to results obtained from standard variational developments employing conventional
prior antisymmetry constraints.

5.1 Prior Antisymmetry
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The development leading to Egs. (32) and (33) begins with construction of an antisym-
metric spectral-product basis, familiar from the early development of Moffitt,*¢ obtained
employing the prior projection

®(1,2,...,n:R)=Py(1,2,...,n)®(1;2;...;n: R), (34)

where ®(1;2;...;n : R) can be taken to be a subspace of Eq. (15) having good total Mg
compatible with the total S value of interest (Mg < S). The projector

nt!

Pa(1,2,...,n) = (nalno! - -nn) 72 (m,)) 72N (<)% B, (35)

p=1

is the familiar n;-electron antisymmetrizer “wave-function normalized” in the limit R —
0.5 In Eq. (35), d, is the parity of the permutation 131,, the sum is over all n;! electron
coordinate permutations, and the correction factor (ni!lns!---n N!)_l/ 2 insures asymptotic
wave-function normalization in the presence of the prior antisymmetry of the individual
atomic states in Eq. (15). The use of commas between electron coordinates on the left-
hand side of Eq. (34) serves to indicate that the individual terms in the basis are of good
permutation symmetry type, as opposed to those of the spectral product basis of Eq. (15).

Employing Egs. (15) and (16), the basis of Eq. (34) is seen to satisfy the closure
relation

N
|
. . 1ot /. + Nng: Q) (g al
®(1,2,...,n: R)-®(1',2',...,n : R) —)—nl!nﬂ.“nN!aI:llél())(z ') (36)

in the totally antisymmetric subspace of Eq. (15). Consequently, the antisymmetrized
spectral-product or Moffitt basis is formally @-fold redundant [Q = n;!/(n1lng!---ny!)]
for representations of antisymmetric states.?%27=2% To clarify the origins of this circum-
stance, note that although P4 of Eq. (35) nulls the unphysical irreducible representations
of S,, contained in the reducible spectral-product basis, the failure to exclude the re-
dundant contributions that arise in antisymmetric states formed from unrestricted orbital
products in the spectral-product basis gives rise to the factor @ in Eq. (36). Such over-
counting is avoided within each individual set of atomic states ®(*) (7 : R,) by including all
orderings of spin-orbital configurations but excluding explicit permutations among electron
coordinates %, or, equivalently, by limiting the contributing spin-orbital products to strictly
ordered electron configurations in Slater determinants.%? However, since no restrictions are
placed on the contributions in Eq. (34) arising from products of spin-orbitals from two
or more different atomic basis sets, and all electron coordinate permutations among these
are included implicitly in the limit of closure, Eq. (34) contains redundant terms in this
limit.25:27-29,73=75 More specifically, the factor n;! in the numerator of the redundancy
factor () is the total number of possible arrangements of n; electrons among n; available
positions, whereas the factor ni!ns!---ny! in the denominator of () corrects this value
only for re-arrangements within the individual atoms, which do not arise in forming the
linearly independent atomic spectral states by using a single assignment of electrons to
orbitals or the equivalent restriction to ordered configurations in Slater determinants.52
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The overcompleteness of Eq. (36) is of no consequence in the limit R — oo, since the
interaction terms in the Hamiltonian matrix vanish identically and the Hamiltonian matrix
correspondingly has no off-diagonal elements. In this case, the states of Egs. (15) and (34)
give the same aggregate energies, and the latter otherwise provides results equivalent to use
of the former atomic-product states. Moreover, for large values of R, when perturbation
theory can be employed, the factor () can be taken into account explicitly in expressions
for wave functions and energies involving spectral summations, although care must be
exercised in this connection.?~3% More generally, however, for arbitrary finite values of
R, where the basis of Eq. (34) is no longer orthonormal and perturbation theory is
unsuitable, the redundancy in the limit of closure gives rise to linear dependence which
must be overcome in computational applications. As will be demonstrated, it is possible
to not only employ familiar canonical orthogonalization procedures to remove the linear
dependence in Eq. (34),7° but, correspondingly, to also remove the unwanted non-Pauli
representations of the symmetric group S, present in the spectral-product basis of Eq.
(15).

5.2 Metrically-Defined Hamiltonian Representation

Following standard procedures,” the potentially overcomplete Moffitt basis of Eq. (34)
is employed in a linear variational solution of the aggregate Schrodinger equation, giving
the familiar matrix equation

H(R)-Un(R)=S(R)-Un(R) - E(R) (37)

appropriate in a non-orthonormal representation.®® Here,

HR)=Y { HOR)+ Y v<aﬁ>(R)} (38)
a=1 B=a+1

is the metrically-defined Hamiltonian matrix in the totally antisymmetric basis, where the
individual atomic H(®)(R) and atomic-interaction V(®#)(R) terms, corresponding to the
operators of Egs. (3) and (4), respectively, are now dependent upon the positions of all
the atoms in the aggregate consequent of this antisymmetry [cf., Eq. (20)],

S(R) = (®(1,2,...,n: R)|®(1,2,...,n: R)) (39)

is the overlap or metric matrix of the antisymmetric basis, E(R) is the aggregate diagonal
energy eigenvalue matrix, and Ug(R) is the solution matrix that contains the column
eigenvector representations of the antisymmetric Schrodinger states in the non-orthogonal
basis of Eq. (34),

¥(1,2,...,mn: R)=®(1,2,...,n: R)-Uyg(R). (40)

The matrices S(R) and Uy (R) together determine the projection of the basis states
of Eq. (34) on the solutions of Eq. (40) in the usual form,

(®(1,2,...,n: R)|¥(1,2,...,n: R)) =S(R)-Un(R), (41)
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where Ug (R) satisfies the familiar modified orthogonality condition
Un(R)"-S(R)-Un(R) =1, (42)

and I is the unit matrix of dimension equal to that of the basis of Eq. (34). It should be
noted that different fonts are employed in Eqgs. (17) to (20) and in Egs. (37) to (42) to
distinguish between matrices and other quantities represented in the spectral-product and
Moffitt basis sets, respectively.

5.3 Removal of Linear Dependence in the Moffitt Basis

In the closure limit of Eq. (36), the Moffitt basis of Eq. (34) is linearly dependent, the
metric matrix of Eq. (39) correspondingly becomes singular [det|S(R)| — 0], and Eq. (37)
is generally ill conditioned. The linear dependence of the basis of Eq. (34) in the limit
of closure is avoided by isolating a linearly independent subspace employing the unitary
transformation matrix that diagonalizes S(R),

Us(R)' - S(R) - Us(R) = s(R), (43)

where the diagonal matrix s4(R) contains a positive block [s((ip )(R)] and a block [sfiu) (R)]
that tends to zero value in the closure limit. By appropriate orderings of the eigenvalues and
vectors of S(R), the non-zero block associated with the column eigenvectors in Ug(R) that
provide the physically significant linearly-independent subspace of Eq. (34) can be placed
in the upper left-hand corner of s4(R), whereas the block that tends to zero, associated
with the linearly-dependent or “unwanted” portion of the basis of Eq. (34), can be placed
in the lower right-hand corner, giving

sd(R):<S‘(ip)0(R) Sg“;)(R))%(QOIp Oou)' m

Here, I, is the unit matrix in the linearly-independent physical subspace, 0, is the zero
matrix in the unwanted subspace, and @ is the redundancy factor of Eq. (36). The right-
hand side of Eq. (44) follows from the observation that the eigenvalues of the metric
matrix S(R) are either @ or 0 in the limit of closure, in accordance with the presence of
this factor in Eq. (36) and the linear dependence of the unwanted subspace.

Employing the matrix Ug(R) of Eq. (43), the basis of Eq. (34) is transformed into a
new basis ®g(1, 2,...,n : R) comprising the linearly-independent subspace <I>(sp ) (1,2,...,m:
R) in which the physical eigenstates can be constructed, and the unwanted subspace
<I>gu)(1, 2,...,n: R). The two subspaces are given by the common expression

®5(1,2,...,n: R)=®(1,2,...,n: R)- Ug(R) - sg(R)"/?

={®P(1,2,...,n: R),®(1,2,...,n: R)}, (45)
where
&P (1,2,...,n: R) = {®(1,2,...,n: R) - Us(R)}, - s (R)"/? (46)
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is the orthonormal linearly-independent subspace and {...}, designates the physical part
of the enclosed row vector. The linearly-dependent subspace

®M(1,2,...,n: R)={®(1,2,...,n: R) - Ug(R)}, - s (R)~/? (47)

is ill-defined in the limit sgu) (R) — 0, but is not required here. The closure of the physical
basis for antisymmetric states,

8% (1,2,...,N:R)-#P(1',2,...,N': R)! =

{®(1,2,...,N: R) - Us(R)}, s (R~ - {®(x',2',...,N': R) - Us(R)}} —
Q {®(1,2,..., N:R)-®(1',2/,...,N': R)}, = { H (51()0‘)('i —i')}p, (48)

follows from Eqgs. (36) and (44) and the unitarity of Ug(R), with the redundancy factors @
that appear in the numerator and denominator of the left-hand side of the last line in Eq.
(48) canceling in the limit of completeness. The second subscript “p” on the right-hand side
of Eq. (48) refers to restriction of the delta-function product to the linearly-independent
subspace.

The matrix Ug(R) of Eq. (43) can be employed in the usual way to transform the
potentially ill-conditioned Hamiltonian matrix H(R) of Egs. (37) and (38) to a form
that isolates its linearly-independent block, giving the generally well-conditioned matrix
Schrodinger equation

HY (R)-UP(R) = U (R)- EY(R), (49)
where the reduced-dimension matrix
HP(R) = (®%)(1,2,...,N: R)|H(1,2,...,N : R)|®"(1,2,..., N : R))
=P (R)"/2. {Us(R)" - H(R) - Us(R)}pp - s (R) 1/
— Q7Y {Us(R)"- H(R) - Ug(R)},,Q*/*

= f: { H(R f: vsfa’ﬂ)(R)} (50)

B=a+1

provides the non-singular portion of the metrically-defined Hamiltonian matrix. Here, the
notation {...},, implies that only the upper-left (pp) block of the enclosed matrix is to be
retained, and the individual atomic
H{(R) = s (R)7/? - {Us(R)! - H)(R) - Us(R)}, - s (R)™/?
- Q72 {Us(R)'- H*(R) - Us(R)},, Q7V/? (51)
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and atomic-interaction
Vi (R) = sP(R)™V? {Us(R)! - V@D(R) - Us(R)},y - sP (R)V/?

— Q72 {Us(R)T- V*P)(R) - Us(R)},, Q7/° (52)

terms in Eq. (50) refer to transformations of the corresponding terms in Eq. (38).
The matrix of physical energies Eép )(R) and of corresponding column eigenvectors
Ug)(R) of Eq. (49) are of reduced dimensions relative to E(R) and Ug(R) of Eq. (37),

respectively. Since the eigenstates <I>(Sp )(1, 2,...,n: R) of the S(R) matrix of Eq. (41) are
symmetry adapted, the Hamiltonian matrix of Eq. (50) will be block diagonal in the total
spin quantum numbers and in other appropriate aggregate symmetry labels, in accordance
with Schur’s lemmas.%® Of course, the limits sgp )(R) — Q I, and sfiu)(R) — 0, of Eq.
(44) apply only when closure is achieved, with the partitioning of s4(R) into s((ip )(R) and
s((i")(R) somewhat subjective, and the diagonal matrix sff )(R) appearing in Eqs. (50)
to (52) required more generally, rather than its limiting value @ I,. As a consequence,
selection of the dimension of the physical block {...},, of the transformed Hamiltonian
matrix, which will generally have non-zero off-diagonal blocks connecting the “p” and “u”
subspaces in finite representations, is correpondingly subjective, and must be determined
in the course of calculations on basis of the accuracy of results desired, with convergence
achieved when the off-diagonal terms are judged to be negligible.

5.4 Isolation of the Antisymmetric Spectral-Product Subspace

The foregoing standard development employed to remove linear dependence in the
prior antisymmetrized or Moffitt basis of Eq. (34) can also be employed to separate the
physical and unphysical subspaces of the spectral-product representation, and to construct
corresponding energies and eigenfunctions of the Hamiltonian matrix of Eq. (17) which
converge to the symmetry-adapted eigenstates obtained from the development of Eqgs. (37)
to (52). Specifically, the important identity

(®(1;2;...5m: R)|15A(1,2, co,n)|®(1;2;...;n: R)) = QY2 S(R), (53)

which follows from substitution of Eq. (34) into Eq. (39) and is valid in any denumerable
basis, indicates that the matrix representative of the antisymmetric projector of Eq. (35)
in the spectral-product basis is proportional to the metric matrix S(R) constructed in
the antisymmetric basis ®(1,2,...,n : R). Accordingly, diagonalization of the matrix
S(R) in Eq. (43) is equivalent to diagonalization of the matrix representative of the
antisymmetric projector in the spectral-product basis, and to the construction of a subspace
of antisymmetric eigenstates in this representation.
Applying the transformation Ug(R) to Eq. (53) gives

Us(R)' - (®(1;2;...;n: R)|[P4(1,2,...,n)|®(1;2;...;n: R))- Us(R)

(»)
_ —1/2 [ S (R) 0
=< ( "o sg;w(R)) | (34
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where Eq. (43) has been employed on the right-hand side. Defining the transformed basis
Pg(1;2;...;n: R) =P(152;...;n: R)- Us(R)

= {@(Sp)(l;z; N % R),<I>(Su)(1;2; .;n: R}, (55)
where
@(Sp/u)(l;z;...;n :R) = {®(1;2;...;n: R)-Us(R)},/, (56)

correspond to the physical and unphysical subspaces, it follows that Eq. (54) can be
written as the two equations

1 ’!lt! .
(@ (1520 s R Y ()7 B 80 (152 5m B) =5 (R)/Q ~ T, (570)
T p=1

" 1 nt! . w “
(@67 (15255 R) 3 (-1) B |08 (152 sn R)) = 577 (R)/Q > 0w (5T0)
“p=1

Equation (57a) demonstrates, independent of group-theoretical considerations,%° that the

“p” subspace of Egs. (55) and (56) contains the totally antisymmetric representation of

Sn, only once [s((ip )(R) /Q — L], whereas Eq. (57b) demonstrates that the “u” subspace

consists of non-totally-antisymmetric eigenstates in the limit of closure [s((iu)(R) /Q — 0,].
Note that the factor (1/n;!) employed in Eqgs. (57) is appropriate for a normalized Young
operator, rather than a normalized wave function [cf., Eq. (35)]. Finally, from Eqgs. (16)
and (56) and the unitarity of Ug(R),

N
<I>(Sp/u)(1;2;...;n : R)-<I>(Sp/u)(1';2';...;n' ‘R)T — {H 51()a)(i—i')}p/u (58)

a=1

expresses the closure of both subspaces of the eigenstates of the totally antisymmetric
projector in the spectral-product basis.

It is seen from the development of Egs. (53) to (58) that both “p” and “u” subspaces
of Egs. (55) and (56) can be constructed employing the transformation matrix of Eq. (43)
obtained from the metric matrix, with “p” referring to the totally antisymmetric physical
subspace of the spectral-product basis and “u” to a mathematically well-defined orthonor-
mal unphysical subspace in this representation. It may be concluded, therefore, that the
transformation matrix Ug(R) of Eq. (43), defined to eliminate linear dependence in the
explicitly antisymmetrized Moffitt basis ®(1,2,...,n : R) of Eq. (34), correspondingly
separates the totally antisymmetric and non-Pauli subspaces of the spectral-product basis
®(1;2;...;n : R) of Eq. (15). Accordingly, Ug(R) can be employed to partition the
Hamiltonian matrix of Eq. (20) into its physical and unphysical blocks [Eq. (33)], and to
construct physical Schrodinger eigenstates in the spectral-product basis [Egs. (32)].

Employing the transformation matrix Ug(R) of Eq. (43), the physical block of the
matrix Schrodinger equation in the spectral-product basis [Eq. (17)] takes the form [cf.,
Eq. (49)]

H{(R)- Uy (R) = UF (R) - B (R), (59)
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where

HY(R) = (®P(1;2;...; N: R)|H(1,2,...,N: R)|®" (1;2;...; N : R))

= {UL(R)-H(R) - Us(R)}, = Y_{ B R+ Y v ®}  (60)
a=1 B=a+1

is the physical block of the Hamiltonian matrix of Eq. (20), with

H{)(R) = {Us(R)" H® - Us(R)},, (61)
and
VEP(R) = (Us(R)T- VP (Rap) - Us(R)},p, (62)

corresponding to transformations of the individual terms of Egs. (21) and (23), now
dependent upon the positions of all the atoms in the aggregate as a consequence of the
non-local effects of antisymmetry.

5.5 Equivalence of Prior and Post Antisymmetrization

To demonstrate the equivalence of results obtained from the post and prior antisym-
metrization procedures described in the foregoing developments, note from Eq. (34) that
the states @(Sp)(l, 2,...,n: R)and @gp)(l; 2;...;n: R)of Egs. (46) and (56) are identical
in the limit of closure,

<I>(sp)(l,z,...,n : R) =]5A<1>(Sp)(1;2;___;n . R)-s((ip)(R)_lﬂ N

(ng)1! Z(—l)é”ﬁpq)(sp)(l; 2;...;n: R)— @gp)(lg 2;...;n: R), (63)
p=1

where the left-hand side of the last line is a consequence of Eq. (44) and the right-hand
side of the antisymmetry of the basis q)(sp )(1; 2;...;n : R) in the limit of closure, the n;!

permutations of the unnormalized antisymmetrizer Z;’il(—l)‘sp P, providing n,! identical
terms which cancel the corresponding factor in the denominator in this limit. Alternatively,
employing Eqs. (53) to (57), the spectral overlap of the two sets of basis states is given by
the expression

(<I>(Sp)(1;2; m R)“I'(Sp)(l,2, ...,n:R))=Q /2 s((le)(R)l/2 — I, (64)
in accordance with these basis states becoming term-by-term identical functions in the
closure limit of Eq. (63).

The foregoing results can also be expressed in terms of the representation of the trans-
formed Moffitt basis [Eq. (46)] in the transformed spectral-product basis [Eq. (56)],
Pg(1,2,...,n: R) = Pg(1;2;...;n: R)- (Pg(1;2;...;n: R)|Pg(1,2,...,N: R)) —
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<I>S(1;2;...;'rl,:R)-Q_l/zSd(R)-sd(R)_l/z—><I>S(1;2;...;'rl,:R)-(Ié7 (?), (65)
u

employing Egs. (53) to (57) and the closure limit in the last line. It is seen that Eq.
(65) corresponds to Eq. (63) for the physical subspaces of the two basis sets, and also

exhibits explicitly the linear dependence of the subspace <I>(Su) (1,2,...,m: R) in the limit
of closure.

Similarly, introducing the closure relation of Eq. (58) for the physical states on either
side of the Hamiltonian operator in Eq. (50), and using Eq. (64), gives

HP(R) = (3% (1,2,...,n: R)|H(1,2,...,n: R)|®% (1,2,...,n: R))

_ Q_l/z S((ip)(R)l/2 . H(Sp)(R) . S((ip)(R)l/2 Q—1/2 — H(SP)(R), (66)

employing the limiting expression s((ip )(R) — @I, in the last line, where H(Sp )(R) is given
by Eq. (60). The individual atomic

Héa)(R) _ Q—1/2 S((ip)(R)+1/2 ) H(Sa)(R) . S((ip)(R)+1/2 Q—1/2 N Hg") (R) (67)
and pair-interaction
Vs(aﬁ)(R) _ Q—1/2 Sgp)(R)+1/2 . Véaﬂ)(R) . S((ip)(R)+1/2 Q—1/2 N V(sa’ﬂ)(R), (68)

terms of Eq. (50) are also seen to be equivalent to the corresponding terms H(Sa)(R) and
Véa’ﬂ )(R) appearing in Eqs. (60) to (62) in the limit of closure. Equations (66) to (68)
show that the Hamiltonian matrices of Egs. (50) and (60), and the associated individual
atomic-energy and atomic pairwise interaction-energy matrices are related by the indicated
renormalizations in finite basis sets, whereas they are identical in the closure limit.
Finally, it follows from the foregoing development that the eigenvalues and eigenvectors
obtained from Eq. (59) converge to those of Eq. (49) [Eép) (R) — E(Sp)(R), UI({p)(R) —

Ug)(R)], and, in view of the equivalence of the two basis sets [Egs. (63) to (65)], that the
eigenstates obtained from the two developments,

P (1,2,...,n:R) = <I>(Sp)(1,2,...,n : R) - Ug’)(R) (69a)
P (1;2;...;n:R) = <I>(Sp)(1;2;...;n : R)-Ug)(R), (69D)

provide identical antisymmetric solutions of the Schrodinger equation in the limit of closure.

6.0 Computational Implementation and Illustrative Calculations

To demonstrate that the new approach described in the foregoing Sections is computa-
tionally viable, illustrative calculations of the lowest-lying singlet and triplet states of the
electron pair bond (Hz) are given as an example of the nature of the metric matrix of Eq.
(39) and its eigenvalues, and of the convergence achieved employing standard Gaussian
basis-set methodology.?%4% A computationally efficient implementation of the theory is
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described which employs recursive construction8%:3! of invariant subspaces of the spectral

basis starting from appropriate reference states in calculations of potential-energy curves.
Construction of the entire metric matrix is avoided in this way, and only individual rows
of the spectral-product Hamiltonian matrix need be evaluated sequentially, avoiding its
complete construction and storage at any one time.

6.1 Illustrative Calculations - The Electron Pair Bond

In the two-electron case (nt=2), the spin functions are factored out and attention fo-
cused on spatial functions which are symmetric or antisymmetric under electron transpo-
sition. These provide a basis for irreducible representations of Ss corresponding to single-
and triplet-state symmetries, respectively, with the singlet states playing the role of the
unphysical subspace in this example. That is, although the spatially symmetric states are
physically significant for Hy, they nevertheless represent an unwanted symmetry type in
the context of the development of Section 5 relative to the spatially antisymmetric states,
and so can be used to illustrate the permutation-symmetry isolation method described
there. In the absence of other irreducible representations for n;=2, both sets of solutions
can also be constructed by direct diagonalization of the spectral-product Hamiltonian ma-
trix for comparison with results obtained from the unitary transformation of Egs. (59) to
(62) for isolating the subspace representations.

The spectral-product basis of Eq. (15) in this case,

&(1;2: R) = {¢<a>(1 ' Ro) ® ¢P) (2 : Rﬂ)} (70)

o
corresponds formally to all products of all discrete and continuum hydrogenic orbitals
for the two atoms, here designated as o and 3, with R = |R, — Rpg| the interatomic
separation. The basis of Eq. (70) spans both spatially symmetric and antisymmetric
representations of the group S2 once and only once, whereas its antisymmetric form [Eqgs
(34) and (35)] will be 2-fold redundant, as is seen from Eq. (36). To avoid dealing explicitly
with continuum hydrogenic states, denumerable representational basis sets are employed
in the calculations in the usual way.3%4% Specifically, approximations to the orbital spectra
¢ (1 : R,) and ¢ (2 : Rg) are devised which accurately reproduce the lowest-lying
orbitals and which also span the Rydberg and lower-energy portion of the continuous
spectrum in the form of pseudostates.”® By adopting even-tempered Gaussian basis sets
for this purpose,?? standard computational methods can be employed in evaluating the
matrix elements required in forming the spectral-product Hamiltonian matrix [Egs. (20)
to (25)] and in performing its unitary transformation [Egs. (43) and (60)].39:40

In Table 1 is shown the spectrum of atomic energies obtained for s,p,d and f orbitals
constructed in even-tempered Gaussian basis sets,3? with orbital exponents chosen so that
the discrete and lower continuum states are spanned by the numbers of orbitals shown for
each angular momentum value.8378% Although systematic studies of orbital selection are
not reported here, it should be noted that considerable experience has been gained in this
connection through previous studies of square-integrable representations of all the discrete
and continuum states of atoms and polyatomic molecules constructed on a common basis.”®
The spectra of Table 1 are judged on basis of their spatial and spectral extent to be suitable
for describing the charge distortions accompanying chemical bond or antibond formation in

Distribution A: Approved for public release; distribution unlimited.



Hs in the interval R ~ 1 to 5 ag, for describing wave function symmetry or antisymmetry in
the absence of explicit electron exchange terms, and for otherwise approximating spectral
closure in this interval.

In Figure 1 are shown selected eigenvalues of the (1,296 X 1,296) metric matrix S(R)
of Eq. (39) for Hy evaluated employing only the s and p basis sets of Table 1.8485 The
normalized two-electron antisymmetrizer,

Pa(1,2) = (1/2)772(1 - Ppa), (71)

is employed in this case, with the redundancy factor Q=(2!/1!1!)=2 indicating that the
totally antisymmetric representation of Sy is spanned twice by the antisymmetric spectral-
product basis in the limit of closure. Only the fifty largest (s; ~ 2) and the fifty smallest
(s; = 0) eigenvalues of S(R) are shown in Figure 1 as functions of the interatomic separation
in Hy. The eigenstates of S(R) corresponding to s; &~ 2 values refer to linearly-independent
spatially antisymmetric states constructed in the antisymmetric basis, whereas those cor-
responding to s; = 0 values refer to linearly-dependent combinations of the antisymmetric
basis, in accordance with Egs. (43) to (48). On the other hand, the states obtained in the
spectral-product basis corresponding to the s; & 2 of values of S(R) refer to antisymmetric
states, while those corresponding to s; ~ 0 values refer to symmetric states, in accordance
with Egs. (53) to (58). When the two-electron symmetric projector is employed in place
of Eq. (71), results identical to the foregoing are obtained, but with the states previously
corresponding to s; &~ 2 and s; ~ 0 interchanging their identities

A significant number of the eigenvalues of S(R) depicted in Figure 1 evidently maintain
their extreme values (s; &~ 0 or 2) over the chemical interaction region (R ~ 1 to 5 ag),
whereas only a very few of these extend into the van der Waals region (R ~ 5 to 10 ayg).
These behaviors are entirely in accord with the spatial characteristics of the spectral states
of Table 1 employed in constructing S(R), which states have relatively small amplitudes
at distances ~ 5 to 10 ag from the atomic origins. Accordingly, the basis of Table 1 can be
expected to give converged results in the chemical interaction region, and particularly at
the equilibrium interatomic separation (R = 1.40 ag), whereas, alternative or larger basis
sets are required to achieve closure at larger interatomic separations.

The spectra of Table 1 are employed in calculations of energies and expectation values
for the lowest-lying 'S} and % states in Hy at the equilibrium interatomic separation
following the developments of Sections 4 and 5.848% These values for Hy can be obtained
directly from diagonalization of the full spectral-product Hamiltonian of Eq. (20), or
from the unitary transformation of Eq. (33), with identical values resulting from the two
procedures in the limit of closure. The total energies and binding energies and the ex-
pectation values of the electron transposition operator Py5 for both states shown in Table
2 evidently converge monotonically in both cases to known values®® with increase in the
angular momentum character of the atomic basis states employed. Similarly, the norms
of the familiar singlet and triplet Heitler-London functions®” represented in the spectral-
product basis also shown in Table 2 give additional indication of the closure achieved for
exchange terms in the wave functions this case. It is found in the finite basis sets of Table
1 that significantly more than one-half of the transformed Hamiltonian matrix of Eq. (33)
is required in order to reproduce accurately the results obtained from the full spectral-
product Hamiltonian matrix. That is, the symmetric and antisymmetric subspaces in this
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case are not completely isolated by the unitary transformation of Eq. (33) into approx-
imatelty one-half of the dimension of the original spectral-product basis, and the blocks
of the Hamiltonian matrix of Eq. (60) identified as {U; (R) -H(R) - Us(R)}pp/uu must
include a sufficient number of small but non-zero “off-diagonal” contributions in order to
achieve eigenvalues in accord with those obtained from the full Hamiltonian matrix. These
results serve to emphasize that the development of Section 5 provides a formal proof of
convergence of the atomic spectral method, rather than an optimal computational imple-
mentation of the approach, and that additional Gaussian or alternative basis functions and
other computational strategies are required to improve the rate and degree of convergence
achieved.

6.2 Recursive Construction of the Subspace Hamiltonian

The metric matrix and the corresponding explicit unitary transformation of the Hamil-
tonian of Section 5 are avoided employing a recursive method to generate sequences of
(Krylov-Lanczos) basis states which span the two permutation-symmetry subspaces of
the spectral-product basis of Eq. (70). The development employs symmetric or anti-
symetric starting functions in its implementation, essentially constructing the subspace
<I>(Sp )(1; 2: R) of Eq. (55) contained in Eq. (70) around a chosen function of good symme-

try, and avoiding the unwanted subspace <I>(Su)(1; 2 : R) entirely. In this way, tri-diagonal
Hamiltonian matrices of much lower dimensions than that of Eq. (70) can be constructed
which converge to unitary equivalent representations of the totally symmetric or antisym-
metric blocks of H(R) without explicit evaluation and storage of the entire metric matrix
or the Hamiltonian matrix required in Section 5.

Following largely standard procedures,8%8! an orthonormal symmetric or antisymmet-
ric Krylov-Lanczos [vj(1;2 : R), j = 1,2,...jmaz]| subspace of the spectral-product basis
is written in the form

vj(1;2: R) =®(1;2: R)-v;(R),7=1,2,... jmaaz, (72)

where the column vectors v;(R) are obtained from the recursive Lanczos equations®®:®!

Bi(R) vj11(R) = [H(R) — a;(R)I] - vj(R) = Bj-1(R) vj1(R), j = 1,2, .. . jmaz-  (73)

Here, vo(R) can be taken as a null vector without loss of generality and v;(R) obtained
using Eq. (72) from a suitably chosen symmetric or antisymmetric starting function (see
below). The coefficients o;(R) and §;(R), given by the expressions

aj(R) = v;(R)" - H(R) - v;(R) (74)

Bi(R) = vj41(R)" - H(R) - v;(R) (75)

obtained directly from Eq. (73) and the imposed orthonormality of the v;(R), provide
the diagonal and off-diagonal elements of the symmetric or antisymmetric block of the
Hamiltonian matrix in tri-diagonal form. A sequence of approximations to either of the
subspace Hamiltonian matrices is obtained in this way with increasing order j,,q,, Whereas
convergence is achieved in the limit jpqs — 00.7°
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To ensure that the sequence of basis states of Egs. (72) to (75) generates a proper
subspace of the spectral-product basis, and that the tri-diagonal Hamiltonian matrix of
Eqgs. (74) and (75) so constructed is unitarily equivalent to the symmetric or antisymmet-
ric block of the spectral-product Hamiltonian matrix, the function required to start the
recurrence of Egs. (73) to (75) must be explicitly symmetric or antisymmetric and have
nonzero projection on the entire spectral-product basis. These requirements ensure that
all the states in the sequence of Eq. (72) will be explicitly symmetric or antisymmetric in
the closure limit, consequent of the permutation-symmetric nature of the Hamiltonian in
Eq. (73).

Once the Krylov-Lanczos sequence has been constructed employing Eqs. (72) to (75),

corresponding Schrédinger eigenfunctions are obtained in the form™
]mam
Ur(1;2: R) Z ¢;(Er(R))vj(1;2 : R)
jmaw
= Nr(R)®(1;2: R) - ) ¢;(Er(R))v;(R), (76)
7j=1

where Np(R) = {ZJ"“{” ¢;(Fr(R))?}~Y/2 is a normalization factor, the orthogonal poly-
nomials ¢;(E) satlsfy the recurrence relation

/BJ(R) Qj-l-l(E) = [E - aJ(R) ]QJ(E) - IBJ—I(R) Qj—l(E)’ .7 = 17 27 o -jmaan (77)

and the starting conditions for the recurrence are ¢o(F) = 0 and ¢; (E) = 1. The associated
energies Er(R) are obtained from the secular equation g;, .. +1(Er(R)) = 0, with the
¢;(E) characteristic polynomials of the Hamiltonian in the Krylov-Lanczos basis.®%-8! The
development of Egs. (73) to (77) is identical to use of the unitary transformation of Eqgs.
(563) to (62) when j,,4, approaches the dimension of the spectral-product basis, but is
much more rapidly convergent to specific portions of the subspace of physical solutions
than is the approach described in Section 5. This is because appropriately chosen starting
functions v1(1;2 : R) can act as points of spectral concentration about which optimal
Hilbert space descriptions of the desired physical states are built by the iterations of Egs.
(73) to (75).70,80,81

In Figure 2 are shown 'Y} and ®%f potential energy curves in Hy obtained from the
recursive development of Eqs. (72) to (77) and the basis of Table 1 employing symmetric
and antisymmetric Heitler-London test functions [v1(1;2 : R)] to construct the starting
vector vy (R) in each case. These reference states are excellent zeroth-order approximations
to the physical states desired, with the leading tri-diagonal Hamiltonian matrix element
(1) the Heitler-London energy in each case. As the iteration of Egs. (73) to (75) proceeds,
the relatively low-order tri-diagonal matrices obtained provide rapidly converging approx-
imations to the desired subspace energy and wave function corresponding to the chosen
starting function, avoiding explicit diagonalizations of large-dimensioned Hamiltonian or
metrix matrices. Evidently, the potential curves of Figure 2 obtained converge rapidly in
the chemical region (R = 1 to 5 ag) with increase in the orbital angular momentum values
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employed, the [sp| limit already providing ~ 90% of the chemical bonding energy at the
equilibrium interatomic separation, and the higher values providing results in increasingly
good agreement with the correct values. The Heitler-London functions for Hy are well
represented in the spectral-product basis [Eq. (72)] at the equilibrium internuclear sepa-
ration [see Table 2], but must be included explicitly as supplements to the basis at larger
separation in Figure 2, rather than employing the expansion of Eq. (72). In this latter
event, one additional row and column is added to the matrix H(R) in Eq. (73), although
the development of Egs. (72) to (77) is otherwise unchanged.34

Finally, although the present implementation of the development was not devised specif-
ically to study the van der Waals region of bonding, it is satisfying that the correct long-
range energy limit is nevertheless obtained automatically from the recursive projection
procedure. In Figure 3 are shown energy curves obtained from the present development
in the long-range region (R > 12 agp), in which interval the singlet and triplet energies
are indistinguishable, in comparison with values calculated employing standard singles
and doubles configuration-interaction methods in the indicated basis sets. These results
are plotted in a manner [R*{E(R — oo) — E(R)} vs 1/R?] that allows extraction of the
two leading van der Waals coefficients. The Cg coefficients (&~ 6.45 au) obtained from
the (1/R?) — 0 limits of both sets of calculations in the [6s6p] basis set are evidently in
mutual agreement and also in general accord with the known correct value (6.499 au).®°
Similarly, the Cg coefficients (= 123 au) obtained from the slopes of the curves in Figure
3 calculated in the [6s6p6d] basis set are also in accord with the known value (124.4 au).%°
By contrast, although the energy curves obtained from the atomic spectral development
follow the conventional singles and doubles configuration-interaction calculations for larger
R (> 15 ag) values, they do not reproduce the curvatures in the configuration-interaction
results for smaller R values. This circumstance is a consequence of the need for larger or
alternative basis sets, and possibly higher angular momentum terms [see Table 2], required
by the spectral method to insure convergence, which terms are absent in the results of Fig-
ure 3. That is, the energy curve in the 12 < R < 15 ag region is not accurately represented
by the asymptotically correct Heitler-London term and the [6s6p] and [6s6p6d] spectral-
product basis sets employed in Figure 3, emphasizing the well-known sensitivity of the
small interaction energies in the long-range region to the effects of electron exchange.?®:86

7. Discussion and Concluding Remarks.

The atomic spectral method described here adopts a new perspective on calculations of
the electronic structures of molecules and other atomic aggregates. Enforcement of wave
function antisymmetry in an atomic spectral-product basis is deferred until after construc-
tion of the Hamiltonian matrix, the latter consequently taking a particularly simple form
which involves only unperturbed atomic energies and pairwise-atomic (Coulombic) inter-
actions. The required interaction energies are obtained from atomic transition-density
matrices which can be calculated once and for all, providing thereby a quantitative ap-
proach to the quantum theory of matter in terms of spectral attributes of its atomic
constituents. Antisymmetry requirements are subsequently enforced employing a unitary
transformation implemented by recursive methods devised specifically for this purpose.
These and related apspects of the method are illustrated with calculations on molecular
hydrogen (Hz), which demonstrate convergence to results obtained from conventional prior
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antisymmetrization methods. Additional applications of the formalism presently underway
should help to demonstrate the viability of the development in cases in which non-Pauli
representations are present.

The theoretical development adopts the methodologies and attributes of a variety of
conventional methods for determining the adiabatic electronic wave functions and ener-
gies of chemical aggregates. Use of the atomic spectral-product basis dates from early
perturbation-theoretrical treatments of atomic interactions®® and related later efforts to
incorporate the effects of electron exchange in this context.26—3% In contrast to these ap-
proaches, the present development is non-perturbative in nature and is applicable to both
chemical and physical (noncovalent) interatomic interactions on a common basis. Although
explicit electron exchange is avoided at the outset, the totally antisymmetric subspace of
the atomic spectral-product basis is isolated and the unphysical non-Pauli representa-
tions are avoided.26—38 Convergence is ensured in this way to the physically significant
eigenstates contained in the spectral-product representation, providing non-perturbative
methods for avoiding the non-Pauli states that accompany the change in symmetric group
consequent of aggregate formation.32:37 Although convergence is ensured in the limit of clo-
sure, it remains to illustrate in greater detail the computational efficiency of the method
described for recursive isolation of the physical subspace in more complex cases in which
large numbers of unphysical discrete and continuum states are present. Additionally,
although no explicit mention is made here of perturbative solutions in the totally antisym-
metric subspace, this option has been previously considered and remains to be explored in
complete detail.#> Of particular interest in this connection is the efficient incorporation of
charge-transfer and other explicitly antisymmetric terms in the form of chemically signif-
icant reference functions to accelerate convergence of the development to antisymmetric
states, and to ensure that the correct numbers of degenerate multiplets are obtained in
long-range interaction limits.

An explicitly antisymmetrized atomic spectral-product basis has been employed pre-
viously in so-called atoms-in-molecules approaches,*6=59 dating from early observations
of the inadequacy of atomic-orbital representations in describing atomic multiplet order-
ings and of their consequent unsuitability for calculations of total molecular energies.*6 The
present development generalizes the notions of this approach in a rigorous manner employ-
ing the atomic charge and transition densities of the non-iteracting atomic constituents.
As a consequence of Brillouin’s Theorem,% such one-electron properties are commonly
understood to be less sensitive to the effects of electron correlation than are total molec-
ular energies. Once the atomic charge- and transititon-density matrices are determined
employing conventional atomic-structure methods, they can be employed repeatedly in
calculations of the required (Coulombic) atomic interactions. The incorporation of experi-
mental atomic energies in the Hamiltonian matrix, if required, is straightforward, and the
form of the matrix obtained is considerably simpler than in the original atoms-in-molecules
approaches.*6=5% Most important, the convergence of the present method is assured in
the spectral closure limit, and difficulties associated with potential linear-dependence are
avoided entirely in the orthonormal representation employed. In light of these attributes,
largely consequent of separation of Hamiltonian matrix construction from the enforcement
of wave function antisymmetry, the present development provides an atoms-in-molecules
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strategy alternative to that devised many years ago and employed in various forms in the
interim. Although no explicit mention is made here of incorporating diatomic calculations
or other related information in aggregate studies,®' =8 this approach has been described
previously and employed in computational applications to the structures, spectra, and
dissociation dynamics of atomic clusters.#5°1 The important theorems upon which these
studies are based and a more detailed accounting of this variant of the atomic spectral
development are subjects of separate reports.

The relatively simple forms of the two-center interaction terms required in construct-
ing the atomic spectral-product Hamiltonian matrix allows its representation in a wider
range of orbital functions than the Gaussians commonly employed in conventional elec-
tronic structure calculations. In particular, Slater forms allow for efficient evaluations of
the required interaction integrals,”!"2 potentially providing better representations of the
atomic states and associated one-electron transition densities required in the development
than those obtained in Gaussian representations. The ab initio methods currently in use
for constructing the ground and excited electronic states of atoms and molecules can be
adopted for this purpose with little modification.”~'? Although these methods as currently
employed can provide highly accurate results for atomic systems, they require allocations of
significant computational resources in order to perform the repeated electronic structure
calculations at different molecular geometries required in constructing potential energy
surfaces and related properties of molecules. Additionally, they generally deal with total
electronic energies, rather than with atomic binding energies, in spite of the well-known
difficulties inherent in such approaches, the constituent atoms making their presence appar-
ent only through the commonality of atomic basis sets employed in such calculations.39~44
By contrast, the present approach avoids repeated high-level molecular calculations of to-
tal aggregate energies and adopts the ab initio methods only in accurate calculations of
atomic spectral states and their one-electron transition densities. Use of the orthonormal
spectral-product basis also circumvents the well-known basis-set superposition difficulties
associated with conventional approaches,®? which have proved particularly troublesome in
studies of non-covalent interactions. Of course, systematic methods must be devised for
construction and tabulation of the atomic information required for implementation of the
present approach, in which connection it should be noted that atomic spectra are of con-
siderable interest in their own right,®? separate from their use in the context of calculations
of aggregate electronic structures.

The widely employed density-functional-theory (DFT) approaches provide useful struc-
tural and other ground-state information for large molecules and atomic aggregates,3—17
and can be extended to studies of dynamical response functions for calculations of excited-
state properties.'® Although the present approach is based on largely pedestrian theoretical
concepts, and entails no approximations other than those of a computational nature, it
nevertheless has some theoretical commonality with the DFT methods in the shared at-
tempt to circumvent complexities associated with antisymmetry requirements, although by
different means. Specifically, conventional antisymmetric methods are employed in calcu-
lations of the required atomic spectral information, but the Coulombic atomic interaction
potentials employed in the present approach to aggregate formation are constucted in the
absence of inter-atomic exchange effects, and are, therefore, largely unphysical. Relatedly,
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attempts to incorporate explicitly the subtle effects of electron correlation in the DFT
approaches to van der Waals interactions apparently®* lead naturally to the one-electron
transition-density matrices of particular computational focus in the present development,
suggesting that study of possible adoption of DFT methods in the present context may be
beneficial.

Finally, although it is premature to discuss the possible role of the present develop-
ment in connection with semi-empirical and QM/MM approaches to larger systems,9—24
there may ultimatly be some relevance in this connection in view of the atomic-interaction
perspective adopted, and in light of the growing importance of such methods to studies of
proteins and other biological macromolecules.?* Particularly needed are higher-level QM
methods to treat proton and electron transfer, and the isomerizations and other motions
of optical chromophores, in the presence of solvating protein or other environments. Ad-
ditionally, it would be highly desirable to develop methods that can avoid the QM-MM
boundary effects experienced in some applications of current methods, among the other
challenges such studies present.

The foregoing issues and additional matters associated with more general implementa-
tions of the atomic spectral approach clearly require studies well beyond the scope of the
present report. Investigations of these matters and the results of computational applica-
tions to other systems currently in progress will be described in due course.
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Table 1. Spectral Energies for Atomic Hydrogen.?

s-basis? p-basis? d-basis? f-basis?
—0.499991 —0.124998 —0.055256 —0.026707
—0.124994 —0.053439 —0.011199 0.028807
—0.048465 0.025060 0.108901 0.187597
0.088668 0.274825 0.450236 0.617389
0.563368 0.986192 1.361055 1.748440
1.951139 2.880038 3.708833 4.791877
5.660465 7.854649 9.719458
15.152536 21.314359 25.786063
38.982050
98.333482
249.224098
657.488778

@ Orbital energies (au) obtained from diagonalization of the atomic

hydrogen Hamiltonian employing the indicated basis sets.

82—85

b Basis sets employed are the most diffuse [12s8p8d6f] primitives
chosen from a set of 14 even-tempered Gaussian primitives for
each angular momentum symmetry, which set consists of 12 reg-
ularized even-tempered primitives®? supplemented with two addi-
tional primitives in each symmetry having exponents of 0.02786

and 0.01156.
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Table 2. Electron Pair-Bond Calculations.?

Basis®  Energy(a.u.)®  Binding(eV)®  (Pp)¢  (|J®HLD)2)e

12; state
(5] ~1.0096  +0.2618 +0.5255  +0.8052
[sp] ~1.0691  +1.8809 +0.8409  +0.9469
[spd] ~1.1140  +3.1027 +0.9525  +0.9872
[spdf] ~1.1384  +3.7667 +0.9847  +0.9967
Exact86 —1.1745 +4.7478 +1.0000 +1.0000
3%.1 state
(5] 05586 —12.0109 ~0.6226 +0.2950
[sp) —0.6641 —9.1400 ~0.6905 1+0.8078
[Spd] —0.7249 —7.4856 —0.9317 +0.9538
[Spdf] —0.7524 —6.7372 —0.9801 +0.9870
Exact86 —0.7842 —5.8737 —1.0000 +1.0000

® Values at R = 1.40 ao obtained from diagonalization of the
Hamiltonian matrix of Egs. (20) to (25) for Ha, or, equivalently,
from the unitary transformation of Eq. (33) in the text.84:85

® Denotes the portion of the [12s8p8d6 f] basis set indicated in
Table 1 employed in the calculation.

¢ Total and binding energies as indicated; (]512> refers to the expec-
tation value of the electron transposition operator Pyy; |®FHD) |2
is the norm of the Heitler-London function as represented in the
spectral-product basis.
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Captions for Figures

Figure 1. Eigenvalues s; of the metric matrix of Egs. (39) and (71) for Ha, constructed
in the [12s8p] basis set of Table 1 as functions of interatomic separation R(ag):3%%5 val-
ues s; &~ 2 refer to approximately antisymmetric eigenfunctions of electron coordinates
constructed in the spectral-product basis, whereas values s; ~ 0 refer to approximately
symmetric functions of electron coordinates, as is discussed more fully in the text; apparent
discontinuities in the slopes of the plots are due to the coarse grid in R values employed.

Figure 2. Total energy (au) curves for the 12;' and 3%} states of Hy as functions of atomic
separation R(ag): heavy solid lines refer to previously determined accurate values;%¢ light
solid lines refer to Heitler-London values;®” dashed lines give the present results obtained
from the recursion procedure indicated in the text employing the [s], [sp], and [spd] basis
states of Table 1 and Heitler-London test functions in each case.83:84

Figure 3. Potential energy (au) curves for the 12; state of molecular hydrogen in the long-
range interaction region obtained as indicated: open squares - accurate values obtained
from single and doubles configuration-interaction calculations in [6s6p] and [6s6p6d] basis
sets consisting of six regularized even-tempered primative Gaussian orbitals of each angular
momentum symmetry;32 solid circles - spectral theory results obtained from the recursive
development of Eqs. (73) to (77), calculated employing the indicated basis sets; lines -
fits to the straight-line portions of the calculated values; the (1/R%) — 0 intercept gives
Cs = 6.45 au, whereas the slope of the [6s6p6d] curve in this limit gives Cs = 123 au, in
good accord with the known values of 6.499 and 124.4 au, respectively.899°

Distribution A: Approved for public release; distribution unlimited.



2.00

1.80

1.60

1.40

1.20

1.00

Eigenvalue

0.80

0.60

0.40

0.20

0.00

| | | | | | | | | |
1 2 3 4 5 6 7 8 9 10

Internuclear Distance ( a)

Figure 1-Langhoff et al, Journal of Chemical Physics

Distribution A: Approved for public release; distribution unlimited.



0.5 [TT T TR T T [T T[T T[T I T[T T[T T [TTTT TTTT
-0.6 [
0.71T
— |
5 i
© ||
N
> -0.8 [
o)) L
S
q_) |
C —
m —
g -09 [~
C -
Q L
+—
o L
& —
-1.0 [
1.1 [
12 prcn vt b b brvr b b b b

' 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Internuclear Distance ( a,)

Figure 2-Langhoff et al, Journal of Chemical Physics

Distribution A: Approved for public release; distribution unlimited.



R® [E(w) - E(R)] (au)

T T T T T T T

85 .

O
8 - —
O
7.5 .
O
’,/.//
0 //,,/” a
6s6p6d O ¢ *
7 b _D-e -
5B
,B’B’E/B -
g7
P 6s6p -

65 B O-B-E-E T -8 8 e e ——g]

.

| | | | | | |
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

1/R? (au)

Figure 3—Langhoff et al, Journal of Chemical Physics

Distribution A: Approved for public release; distribution unlimited.



